US009436849B2

a2 United States Patent (10) Patent No.: US 9,436,849 B2
Wong et al. 45) Date of Patent: Sep. 6, 2016
(54) SYSTEMS AND METHODS FOR TRADING USPC e 713/193; 380/284
OF TEXT BASED DATA REPRESENTATION See application file for complete search history.
(71) Applicants:Sze Yuen Wong, Herndon, VA (US); (56) References Cited
XVJZ‘)P"“g Leung, Clarksburg, MD U.S. PATENT DOCUMENTS
2010/0054481 Al* 3/2010 Jajodia HO4L 9/0897
(72) Inventors: Sze Yuen Wong, Herndon, VA (US); 380/284
Wai Pong Leung, Clarksburg, MD 2013/0318347 Al* 112013 Moffatcccovnen HO4L 63/08
(US) 713/168

. . . . * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 Primary Examiner — Morshed Mehedi

U.S.C. 154(b) by O days. Assistant Examiner — Abiy Getachew

(21) Appl. No.: 14/549,838 (57) ABSTRACT
o A method for sharing encrypted data and encryption keys
(22) Filed: Nov. 21, 2014 through a system comprised of the following data types, but
. o not limited to a; 1) Record and its encryption key, 2)
(65) Prior Publication Data RecordSet and its encryption key, and 3) Entity and its
US 2016/0148021 Al May 26, 2016 encryption key. A Record is encrypted using an encryption
key, furthermore, the Record encryption key is encrypted
(51) Int. CL using a RecordSet encryption key, and finally, both the
GOG6F 11/30 (2006.01) encrypted Record and its encrypted encryption key are
GO6F 21/78 (2013.01) wrapped as a single unit, to avoid key the expensive opera-
GOGF 21/60 (2013.01) tions of key lookup and general key operation overhead.
GO6F 21/62 (2013.01) Access control to the RecordSet encryption keys are pro-
(52) US. CL vided by a combination of data types, but not limited to a;
CPC oo GOGF 21/78 (2013.01); GO6F 21/602 1) Entity and its encryption key, 2) Ciphers, and 3) Trusted

. . Entity Lists. For each Entity which is authorized access to
(2013.01); GOGF 21/62182;5221 23 70(12) (’)1G30(;$£ access a RecordSet, an encrypted Cipher, made of both the

Entity encryption key and RecordSet encryption key, is

(58) Field of Classification Search added to a Trusted Entity List. Tokens are protected by user

CPC oo GOGF 21/6209; GOGF 21/78: GO6F defined secrets, comprised of Bntity encryption keys,
21/6227; GOGF 21/602; GOGF 21/6218;
HOAL 2209/88; HOA4L 9/0836; HO4L 9/3073 9 Claims, 37 Drawing Sheets

illustrates a Record Diagram

U.S. Patent

Sep. 6, 2016 Sheet 1 of 37

Fig. 1 illustrates an Entity Diagram

US 9,436,849 B2

U.S. Patent

Sep. 6, 2016 Sheet 2 of 37

US 9,436,849 B2

e
PR
o
Trogdect Eadity at
A
s
o~ |1
> - 3
o ¥
-
- 1Y
-~
- RES i
B
-~ b
s j
Sy Bty Enisy Rafity
- s
el ~
- ')
o o
- ™M
b
R e

Fig. 2 illustrates a Recordset Diagram

U.S. Patent Sep. 6, 2016 Sheet 3 of 37 US 9,436,849 B2

.
RN .
3,
St - !
: H >
3 § N <
3 ¥ X
o 3
;‘ W 3 Rtk %
H > >
A \ b \\
&
1 Wrstec et Roct OIS et S
§] N0t FENEY TR

- ~

ey
LAt

Fig. 3 illustrates a Record Diagram

US 9,436,849 B2

o g) s
P Jro -5 575,

3
3
33
A
o~
N
hS

ool
Ny
kK

SRR

gs

Sheet 4 of 37

Sep. 6, 2016

U.S. Patent

L3

4

Revard kay

Fig.4a illustrates Data Decryption Flow Diagram

US 9,436,849 B2

Sheet 5 of 37

Sep. 6, 2016

U.S. Patent

2
B

%

¥

Lo

{ &

o

wad ks
S

N
MHRY

o™

Fig. 4b illustrates Data Encryption Flow Diagram

U.S. Patent

Sep. 6, 2016 Sheet 6 of 37
e ™~

US 9,436,849 B2

Fig. 5a illustrates a Sharing Token Data Structure

U.S. Patent Sep. 6, 2016 Sheet 7 of 37 US 9,436,849 B2

\\\\\

Fig. 5b illustrates a Sharing Token Record Data Structure

U.S. Patent Sep. 6, 2016 Sheet 8 of 37 US 9,436,849 B2

ff
YRR

N \
1 Netums Tk

Fig. 5c illustrates a Sharing Token Validation Workflow Diagram

U.S. Patent Sep. 6, 2016 Sheet 9 of 37 US 9,436,849 B2

g

(%4

Py

(2]
54

Fig. 5d illustrates Data Decryption Flow using Share-Token Diagram

U.S. Patent

Sep. 6, 2016 Sheet 10 of 37

Wt
RRRES 2O
\\ A
2
i Token Senvei %

Fig. 6a illustrates a Export Token Data Structure

US 9,436,849 B2

U.S. Patent Sep. 6, 2016 Sheet 11 of 37 US 9,436,849 B2

4
.
253

Fig. 6b illustrates Data Decryption Flow using Export Token Diagram

U.S. Patent Sep. 6, 2016 Sheet 12 of 37 US 9,436,849 B2

P
%
‘.

Y

g""‘“‘““““““\“\“\“\
LV LY 3
|/YARY

ey
oo ‘\:-'5-

Fig. 7 illustrates a Login Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 13 of 37 US 9,436,849 B2

Entity Spgtam Tiats Store
¢ §
H
soboy

H

H

H
oo

MWWWWW£Z}WMMMW”KZ}Mwwwmmw

284
s
\ oo e o
www”"’“‘”m“ Hep
ol §
e §
3 i

Fig. 8 illustrates a Saving New Record Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 14 of 37 US 9,436,849 B2

Tty Syston Qate Store
¥ § §
! a4 ¢ :

b § §
e H [N ¥
Mm \gg« g
m»«w“””wwwmw H

- 3

i

¥ \ §

3 H

o o §

e AT !

L Ralhe H H
i H H
! § §

Fig. 9 illustrates a Reading Record Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 15 of 37 US 9,436,849 B2

Eesbity Sestem Data Stove
i ¥ H
i O $ H
by ¥ §
! G i
§
§
o o H
e3 :
¢
$
0 T -§;§
o
[b §
o WX
. ;
m.w‘ww*‘""‘\wvxmw R §
A o § }
: : |

Fig. 10 illustrates a Reading Query Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 16 of 37 US 9,436,849 B2

o
i e W

o 5
\ * [b
§
3 S x

3 o aan o MW
R PR S
e W R RO x
“‘i.“ ~ A

Fig. 11 illustrates a Regrouping Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 17 of 37 US 9,436,849 B2

R
RENAN

Entity Syntein Pans Share
H
! A ¥
' H
k]
oo

N.mw"‘"’"")“ e
- i
§

H

Fig. 12aillustrates a Sharing Creation Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 18 of 37 US 9,436,849 B2

T

Srdfty . feata Stove

Fig. 12b illustrates a Token-Sharing Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 19 of 37 US 9,436,849 B2

3
Gt
P23
e
22
foucd
27
¥
%

Eetity A

b \\ §

%
e I R N e M ST I

o
B
£ 0ENE o e PN
S8 I S

o o T g

Fig. 12¢ illustrates an Entity-Sharing Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 20 of 37 US 9,436,849 B2

Leatihy Systan Liata Sove
H ¥
: NCHE
..

5

-t

¥
¥
¥
¥
¥
H
i
{
H
H
i
i
i
8
¥
§
k
£
¥

L. Bl
TR
a0 e
-
o W
PO dwﬁww
wen wen WA
wwmmw""’"mw by
A S H
! H
s

Fig. 13 illustrates a Assighment Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 21 of 37 US 9,436,849 B2

N \I\

fradty System Data Srore
! 3
t
H
H
poodbony

EEIE o
s
e e
o ten T
K\ - (T
g
R
e i
g 3
T ¥
§ §

Fig. 14 illustrates a Export Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 22 of 37 US 9,436,849 B2

Data Stare

H

H

i

R ¥

‘ \\ ;
m«d"’"”’"w'ﬁ

H

) H

H

H

H

H

§

H

O3 UL
) *w"’“
\ w'ﬂ““*
L S §
e §
§ i
i 3

Fig. 15 illustrates a Import Flow Diagram

U.S. Patent Sep. 6, 2016 Sheet 23 of 37 US 9,436,849 B2

e S o e e o T
A

o - ~
<& by ¥ %
; ¥ ; : H 3
N o 3 2 $ H } ST I
' B R : 5 APPLIGATON SERVER : ; e i
N 3 FIE : § ¥ 3
; ; SENNONN NN M : + : :
: : P SOFTWARE FRORSNE 3 : y
: H B e e e e e e e ; s RESNGEY § 3
: 3 %) it
: ;
3
; : : g SEFTIVARE FRARENVENK } ; ; . * ;
: T USTOMRATRE SFFY ; N : : N ¥ 4 i
! 2 r \ } it
: 4 i 4 Y BNREPINE i i { RECDRG F
3 AYSTER Logen y 3
; I "é § ! . «\‘3 :
¢ v : : H
: £ £ 3 % ;
: H 3 b
: : § . 3 N
e ESSTR ; : ! ! 3
: : $ } :
: ¥ 3 3 § H
N i : % :
i ; i N ; !
. : 3 4 N §
; ; ¢ ! : H
' s 438 i i W " i
i SLEENY N : ; © DATADASERERVER |
i AR N ¥ 3 i 3“' i 8 ¥
N 3 % . « &
& kS o 5
e R T n e R O e e o B

Fig. 16 illustrates an Overall System Architecture Diagram

U.S. Patent

Sep. 6, 2016

Sheet 24 of 37

[

NN

ad

US 9,436,849 B2

o

IR

S

SRS

3
R

ey

W e Kooy §

— 7

AR

Fig. 17 illustrates a Data Update Diagram

U.S. Patent Sep. 6, 2016 Sheet 25 of 37 US 9,436,849 B2

B % : ; >
; LS - 3
; ML $ ROY WRANSNG & Y ;
3 N 3 SYEIRNS 3 Yt s
i 2 i ¢ 2
] ? 3 3
i RN Tow e A 3
] R N 3 3
i } §
i ¥ 3 ; 2
3 Y i
t ST i N d SAATAMNARY RN H
. A Y N N DATABARY BERVER ;
~ -~ ‘ % « -~
e e : S A
>
E)
X
3 .
} i
54 HRY FOEARTIN EEN
v FEETER i
!-‘ : $F
i R ?
{ &8y
i H
N §
§ AFPLICATION SERVER :
,

I T T R R N R R

Fig. 18 illustrates an Alternative System Architecture Diagram

U.S. Patent Sep. 6, 2016 Sheet 26 of 37 US 9,436,849 B2

2100

2940 2120

\

2“{ LA A B A L N N & X XN X N N R XN J LA I I S I R N N R N
] r ¢

L 3 3
~ : : 1] e
of "UsprAcoount™; { s of Usarastounit { i //
v “Firsiame™ Joha", M ! FiniName™John", 4
' AasName™ Dea’. : ! “zsipfama™ Coe’, :’
v “Age™20 . v R0 s
) : i} :
" : R .
* ’ 3 1]
X] *

LR R R RN AN P A W N YR ﬁuuucn»»ol:onn~n»a-n
I 2422

2112 /
M nisthod of encrypting whals cals Method of encrypting valiss of]
gsia as on ciphor iadividud sfsments
.‘-.-'I---‘ln-ﬁ-&-‘-vtn‘ ‘-UCCD-ﬂ--'l.ﬂ.--ﬁﬁ\.-‘-‘,
2114 § ; : ' 2524
’ x of “UsarAocount™: { . ;
~ : v PEstName MZSVVEOR..", | /
4 4 ¢ LasiName U REsTIVowW..", 8
: YGUNMM@" « : : ﬁmm:apusmsl LB '/
: : 1} :
' : i :
1] ¥ 3 ‘'
leodskasdswvuadmwe baodsns Tosuvaswbumeshbwednwnewawl

Fig. 19 is a structural view of sale data single cipher vs compasite cipher structure.

US 9,436,849 B2

U.S. Patent Sep. 6, 2016 Sheet 27 of 37
2200
AN
22
2, 2223
@ e~ —— Z
e
JS50N Meta Data JSON Mseta Dats
j » -
\ - -
N
JEON deta Data Kay Infa Koy inks Koy info
,—’f 2205 2208 2207 "“\%
~ ~ e ~ o
e dK ayCipher Ngarithm tFiedds
2309

\ 2208
i /
Racard Kay

Fig. 20 is a conceptual view of a digital merchandise when used with Key Wrap data sharing technology.

U.S. Patent Sep. 6, 2016 Sheet 28 of 37 US 9,436,849 B2

N
o
2372 | SCHEMA
b ™~ D5yital Marchandice
= Dats Cory)
~} Sate Data Ciphet Pairs
Core Atitibites
Mets Daty
Sandong Atirdides
Product Atritdes
PREFERRED EMBODIMENT D64
2324 h/
e, \{
“UserAccount™ § /
2566 “FirsiNatne" ¢ ’29&&39%@9&&7!«2@&‘ R
] “Lastiame” : "didlsaSendlRwvelng?d... ™
“Age’ ! "Sdeiladed8Sie e,
2323 “Price” : “$100.00" 2361
e ¥]
™ “taetaDsta ¢ e
“Explration” : "2012-04-23T18:25:48512% ok ogn
Tagy” : [“enpioyous” i 4
“Soaf - adABIBAGK .. -
}
5

Fig. 21 is a structural view of composite cipher structure wherein values are individually encrypted.

U.S. Patent Sep. 6, 2016 Sheet 29 of 37 US 9,436,849 B2

2474 | SCHEMA

™ Digita) Marchandise
a7 Dala Cors
~{._ Sabe Data Cigher Pyirg
™ Cove AfuTutes
Meata Doty
Sesvicing Alributes
Product Attritanas

PREFERRED EMBODIMENT
2424 2464

S g §
™ “Usarhoesunt § /
*SateData” ; "EndrkBiatraldddos Tk 2sk. ..
2423 Price” 1 “$1D0.00"
A
“wotalata® = ¢
“Explration” : "2012-04.23T18:25:43 51127
“Tags” : | "omployens® &
“Soal” - "el4EBOd. "

Fig. 22 is a structural view of a digital merchandise, containing a whaolly encrypted sale data.

U.S. Patent

Sep. 6, 2016

Sheet 30 of 37

2800

2574

2573
iy

amze
L
[USarACCOUNT {

PRIFERRED EMBODIMENT

“SalaData” ; “BofikdfsSoaBiidiTh2sk..
“Price” ; BIDO00"
!

Htetalbnia® = {
“Expirafion” . "201204-23T18:26:43.6112%;

“Saal : "s34GHISHR ..";
T~ “KeyWrap” : (_
{ *RecordKoy Ciphor” : “2e4fnal...™
ﬁﬁmﬂ : n'*jo;
*alsuatn® ¢ “mds")
i

//

}
)3

“Taga" { ‘empioyens™J
/

US 9,436,849 B2

Fig. 23 is a structural view of a digital merchandise when used with Key Wrap sharing technology. Key Wrap

RecordSet key is found in Meta Data.

U.S. Patent

Sep. 6, 2016

Sheet 31 of 37

2601

JSON objert enter the
system

¥

Access Kay is genveaicd

T

Fecond kay iz genaraied

JSON afinhuts values are
enciypied

v

Rucord key & encrypied
using Acoews Key

v

Recard ksy cgher and &3
wro writian 1o 1he MetaDala
sastich

VA VIV W W

N

Fig. 24 illustrates the Data Encryption Fiow Diagram

US 9,436,849 B2

U.S. Patent

Sep. 6, 2016

2700

Sheet 32 of 37

Ercrypted JSON objecty
crier the system

!

US 9,436,849 B2

27071

2702

Ageass ke is used By
RacordKeyClphwor 10 obtaly
Aecond key

!

Record key is usad to
dacrypt afl the attibutes of
the encrygtad JSON object

2ra

!

Flg. 25 illustrates the Data Decryption Flow Diagram

U.S. Patent

Sep. 6, 2016

Sheet 33 of 37

Enciyptot JSON objocts
@e croatatd using the
Enmtcrypiion fiow

+

‘Encrypiied JSON objects
zid Shared key are sonl to
this target system

¥

Temget systen (reales a

AV

3

Targst systens doctypt the
RasorcdiloyCiplier using the
Shatad %y antt enpiys
using how Ancess kuy

\

‘

2805

Tavget systam stores the
JSON gaia

\

]

esoa

Terget system secwed the
Ay Acosss ey

\

v

Fig. 26 illustrates the Data Transfer Flow Diagram

US 9,436,849 B2

U.S. Patent Sep. 6, 2016 Sheet 34 of 37 US 9,436,849 B2

S T
START
v /zam
JSON ghiact onter the
sysiom
4 2502

An‘amployes'tagis ¥
creatod

l /
The (g 18 aclded to thy
JSON tag srvay

¥ ‘
l N l

Fig. 27 is a graphical representation of steps of tagging a JSON embadiment according to an aspect of the invention.

U.S. Patent Sep. 6, 2016 Sheet 35 of 37 US 9,436,849 B2

3001

JSON dats ooro onter the
systern

!

o2
Ahash volue Is computad /
3503

of the JSON data cure

|

Ald the computad bash
value in the J30KN meta

Fig. 28 is a graphical representation of steps of sealing a JSON embodiment according to an aspect of the invention.

U.S. Patent Sep. 6, 2016 Sheet 36 of 37 US 9,436,849 B2

3100

JSON mieta datn enter the
syrsfem

l 3102
A srpiation Brvpstamg is /

penaralad

l //3?03

Add tha supiration
tmastomp to the JSO
ot datn

v
(=)

Fig. 29 is a graphical representation of steps of placing an expiration timestamp in an JSON embodiment according
to an aspect of the invention.

U.S. Patent Sep. 6, 2016 Sheet 37 of 37 US 9,436,849 B2

3200

- /,/ creld

Service Provider bé Marhelplace: }

3236

N~ Buyer

Fig. 30 is a context diagram of trading of text based data representation among stakeholders.

US 9,436,849 B2

1
SYSTEMS AND METHODS FOR TRADING
OF TEXT BASED DATA REPRESENTATION

FIELD OF THE INVENTION

The field of the invention is access control of key wrapped
data encryption and sharing.

BACKGROUND OF THE INVENTION

Data storage in a trust-no-one environment requires
encryption keys to be protected. Data sharing requires keys
to be shared. These two requirements contradict each other,
which is what our key encryption mechanism will solve: A
key encryption mechanism that achieves a trust-no-one
architecture and facilitates data sharing.

Having direct hardware or database access typically pro-
vides a backdoor to shared data in most conventional
computer systems; compromising security. An invention of
trust-no-one access control is highly desirable.

In a typical computer system, individual records need to
be decrypted in order to be shared or regrouped. An inven-
tion that can share or regroup encrypted data without any
decryption is a more efficient improvement.

In most modern systems, sharing encrypted data requires
sharing encryption keys in order for recipients to trust data,
to trust the data’s origin, and to decrypt data. Key manage-
ment is an expensive operating overhead in systems that
have a lot of keys, data, and users. Alternatively, some
systems decrypt and share unencrypted data to avoid key
management overhead, and consequently, compromising
data security and privacy. An invention that allows sharing
encrypted data and encryption keys with minimal key man-
agement overhead is highly desirable.

Using this mechanism, records can be stored in their
encrypted form without storing any of the encryption keys.
No centralized key store is required. None of the record
keys, recordset keys, entity keys, token secrets, or the user’s
passwords, are stored directly in the database. Having direct
hardware or database access does not automatically mean
one has data access, which is the cornerstone of “Trust
No-One” Architecture.

SUMMARY OF THE INVENTION

A key encryption mechanism that achieves a trust-no-one
architecture and facilitates data sharing. This mechanism is
also distributed and requires no centralized key store. All
access control is achieved through the encryption of differ-
ent keys.

The heart of the key wrapping mechanism is the 3 tier
structure: Record, RecordSet and Entity.

Having direct hardware or database access does not
automatically mean one has data access, which is the cor-
nerstone of a “Trust No-One” Architecture.

The individual record keys purpose is so that when
sharing records, or during regrouping, the records do not
need to be decrypted.

When the user changes a user defined key, only the entity
key needs to be re-encrypted.

Among the many different possibilities contemplated,
additional methods may advantageously be provided to
share tokens, create keys, update keys, distribute keys, and
modify shared records.

Various objects, features, aspects, and advantages of the
present invention will become more apparent from the
following detailed description of preferred embodiments of

2

the invention, along with the accompanying drawings in
which like numerals represent like components

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an Entity Data Structure Diagram

FIG. 2 illustrates a Recordset Data Structure Diagram

FIG. 3 illustrates a Record Data Structure Diagram

FIG. 4a illustrates a Data Decryption Flow Diagram

FIG. 4b illustrates a Data Encryption Flow Diagram

FIG. 5a illustrates a Sharing Token Data Structure Dia-
gram

FIG. 54 illustrates a Sharing Token Record Data Structure
Diagram

FIG. 5c¢ illustrates a Sharing Token Validation Workflow
Diagram

FIG. 5d illustrates a Data Decryption Flow Using Sharing
Token Diagram

FIG. 6a illustrates an Export Token Data Structure Dia-
gram

FIG. 6b illustrates a Data Decryption Flow Using Export
Token Diagram

FIG. 7 illustrates a Login Process Flow Diagram

FIG. 8 illustrates a Saving New Record Flow Diagram

FIG. 9 illustrates a Reading Record Flow Diagram

FIG. 10 illustrates a Reading Query Flow Diagram

FIG. 11 illustrates a Regrouping Flow Diagram

FIG. 12a illustrates a Sharing Creation Flow Diagram
Diagram

FIG. 125 illustrates a Token-Sharing Flow Diagram

FIG. 12c¢ illustrates an Entity-Sharing Flow Diagram

FIG. 13 illustrates an Assignment Flow Diagram

FIG. 14 illustrates an Export Flow Diagram

FIG. 15 illustrates an Import Flow Diagram

FIG. 16 illustrates an Overall System Architecture Dia-
gram

FIG. 17 illustrates a Data Update Diagram

FIG. 18 illustrates an Alternative System Architecture
Diagram

FIG. 19 is a structural view of sale data single cipher vs
composite cipher structure.

FIG. 20 is a conceptual view of a digital merchandise
when used with Key Wrap data sharing technology.

FIG. 21 is a structural view of composite cipher structure
wherein values are individually encrypted.

FIG. 22 is a structural view of a digital merchandise,
containing a wholly encrypted sale data.

FIG. 23 is a structural view of a digital merchandise when
used with Key Wrap data sharing technology. Key Wrap
RecordSet key is found in Meta Data.

FIG. 24 illustrates the Data Encryption Flow Diagram.

FIG. 25 illustrates the Data Decryption Flow Diagram.

FIG. 26 illustrates the Data Transfer Flow Diagram.

FIG. 27 is a graphical representation of steps of tagging
a JSON embodiment according to an aspect of the invention.

FIG. 28 is a graphical representation of steps of sealing a
55 JSON embodiment according to an aspect of the invention.

FIG. 29 is a graphical representation of steps of applying
camouflage to a JSON embodiment according to an aspect
of the invention.

FIG. 30 is a graphical representation of steps of placing an

60 expiration timestamp in a JSON embodiment according to
an aspect of the invention.

10

15

30

35

40

45

50

DETAILED DESCRIPTION OF THE
INVENTION

An Entity is referring to users or user-groups who want
access to the record.

US 9,436,849 B2

3

A System is referring to both a software and hardware
implementation of this invention. The techniques presented
herein may be implemented with any state of the art com-
puter programming languages (including but not limited to,
Javascript, Java, Objective-C, C, C++, C#, PHP, Python,
Swift), development tools, platforms or frameworks (includ-
ing but not limited to LAMP, and MEAN stacks).

Data Store may be representative of a plurality of data
stores as can be appreciated.

The Token Key, Entity Key, Record Key, and RecordSet
Key are all generated using a bitstream, which can either be
a byte, an integer, or a bit sequence. The bitstream can be
either system generated, or user defined.

FIG. 1 illustrates an Entity Diagram 100. Users or user-
groups who want access to the record set are referred to in
this invention as an entity. In order to access the system,
Entity record 101 for the given entity, must exist in the
system. The Entity record 101 is defined simply with an
Entity Name 102 and a randomly generated Entity key 104.
The Entity key 104 is encrypted by a user-defined key 105
and the encrypted Entity key 103 is stored in the Entity
record 101 object. The User-defined key 105 can be in the
form of password, which is the preferred embodiment.
Alternative embodiments may be passphrase, physical token
such as RSA token, GOOGLE mobile token, SMS passcode,
biometric mechanisms such as fingerprints, retina scan, palm
print, or X.509 certificate. The reason for a separate Entity
key 104 is so when the user changes passwords, only the
Entity key 104 needs to be re-encrypted.

FIG. 2 illustrates a RecordSet Diagram 200. The Record-
Set 201 is logical groups of records. The RecordSet 201
usually represents all records within a Table (in RDBMS) or
Collection (in document or key-value stores) but can also be
defined to represent a much smaller or larger set of records.

The RecordSet 201 maintains a list of trusted entities 202.
The Trusted Entity List 202 is used for sharing and access
control. The Trusted Entity list 202 may contain one or more
Entity References 203. The Entity Reference 203 is referring
to Entity record 101, that has access to the particular
RecordSet 201. When an entity is being assigned to Record-
Set 201, that Entity Reference 203 is added to the Trusted
Entities list 202.

The Entity Reference 203 contains 3 sections: Entity
Name 204, Access Level 205, and RecordSetKeyCipher
206. The Entity Name 204 is the name of the entity that has
access to the RecordSet 201. The Access Level 205 indicates
the abilities the entity can perform on the RecordSet 201.
The Access Level 204 can have the value of either REA-
DONLY or READWRITE. The RecordSetKeyCipher 206 is
essentially the encrypted RecordSet key 207. The RecordSet
key 108 is a random generated key that was created when the
RecordSet 201 got created. The RecordSet key 207 is
encrypted by the Entity key 104 to form the RecordSetKey-
Cipher 206.

FIG. 3 illustrates a Record Diagram 300. The Record 301
serves as a basic container where the data portion is pro-
tected via the key wrapping mechanism of the invention.
The Record 301 data structure is divided into two sections:
Record Data 302 and Record Meta Data 303.

Data 304 in the Record Data section 302 is protected by
a Record key 308. The Record key 308 is generated during
record creation time and will stay with the record for the
life-time of the record. The purpose of having individual
Record keys 308 is so that the records 301 do not need to be
decrypted when sharing records, or during regrouping.

The Record MetaData section 303 may contains one or
more RecordSet References 305. The RecordSet Reference

10

20

25

30

35

40

45

50

55

60

65

4

305 is referring to a logical group of Records 301 which is
know as RecordSet 201 in this invention. The implication is
that each Record 301 can belong to multiple logical groups.
Data sharing and data access control of this invention is
being controlled via the use of the RecordSet Reference 305.
The Record 301 can be shared to multiple users/entities. The
Entity would only have access to records based on the
RecordSet 201 that the entity belongs to.

Each RecordSet Reference 305 contains the RecordSetld
306 and the RecordKeyCipher 307. The RecordSetld 306
identifies the RecordSet 201 that Record 301 belongs to. The
Record key 308 is encrypted by the RecordSet key 207 to
form the RecordKeyCipher 307. The RecordKeyCipher 307
is stored in the Record MetaData section 303 and will be
used with the RecordSet key 207 to obtain the Record key
308 to unlock the encrypted data 302.

FIG. 4a illustrates a Data Decryption Flow Diagram 400.
In operation 401, the encrypted Entity key 103 is decrypted
using the User-defined key 105, to obtain the Entity key 104.
The Entity key 104 is then used to decrypt the RecordSet-
KeyCipher 206 to obtain the RecordSet key 207 in operation
402. The RecordSet key 207 is used to decrypt the Record-
KeyCipher 307 to obtain the Record key 308 in operation
403. And lastly, the Record key 308 is used to decrypt the
data 304 in operation 404.

FIG. 45 illustrates a Data Encryption Flow Diagram 410.
In operation 411, the data 304 is encrypted by the Record
key 308. The Record key 308 is encrypted by the RecordSet
key 207 to form the RecordKeyCipher 307 in operation 412.
The RecordKeyCipher 307 is stored in the Record 301 along
with the encrypted data 302. The RecordSet key 207 is
encrypted by the Entity key 104 to form the RecordSetKey-
Cipher 206 in operation 413. The RecordSetKeyCipher 206
is stored in the RecordSet 201. And lastly, the Entity key 104
is encrypted using a User-defined key 105, in operation 414.

FIG. 5a illustrates a Sharing Token Data Structure Dia-
gram 500. The Sharing Token allows the entity to share data
with other entities. The Sharing Token 501 consists of two
parts: Token Key 502 and Token Secret 503. The Token key
502 is used as an identifier to locate the token record 511 in
the system. The Token Secret 503 is used to decrypt the
RecordSet key 207, thus allowing access to the record set.
The Token Secret 503 is not being stored in the system data
store.

FIG. 54 illustrates a Sharing Token Record Data Structure
Diagram 510. The Sharing Token Record 511 is the Token
object stored in the data store. The Sharing Token Record
511 contains the information about the token such as Expi-
ration Date, type, etc. The system uses the Sharing Token
Record 511 to verify and validate accessibility of the Shar-
ing Token 501. The Sharing Token Record 511 is divided
into 5 parts: Token Key 512, Expiration Date 513, Type
(TOKEN-ACCESS, ENTITY-ACCESS, and ENTITY-AS-
SIGN) 514, Target Entity Id 515, RecordSetKeyCipher 516.

The Token Key 512 must match with the Token Key 502
of the Sharing Token 501. The Expiration Date 513 allows
the system to determine if the token is still valid. The Type
514 identifies the type of the sharing. The Target Entity Id
515 identifies the entity that has access to use the share
token. The RecordSetKeyCipher 516 is the encrypted
RecordSet that can be decrypted by using the Sharing Token
Secret 503.

FIG. 5c¢ illustrates a Sharing Token Validation Workflow
Diagram 520. The system uses the Token key 502 to locate
the Token record 511 in operation 521. In operation 522, the
system checks to see if the token is found. If the token is not
found, an error is returned. If the token is found, the system

US 9,436,849 B2

5

checks to see if the token is still valid by checking the token
Expiration Date 513 in the operation 523. If the token is
successfully validated, it will be returned for use, however
if the token is invalid, an error is returned.

FIG. 5d illustrates a Data Decryption Flow Using Sharing
Token Diagram 530. The Sharing Token secret 503 is used
to decrypt the RecordSetKeyCipher 206 to obtain the
RecordSet key 207 in operation 531. The RecordSet key 207
is used to decrypt the RecordKeyCipher 307 to obtain the
Record key 308 in operation 532. And lastly, the Record key
308 is used to decrypt the data 304 in operation 533.

FIG. 6a illustrates an Export Token Data Structure Dia-
gram 600. The system is designed to allow record export and
import in encrypted format. This allows records to be
transferred to another system using the same key encryption
scheme without having to decrypt first, thus substantially
increasing security. The Export Token 601 is used to send
encrypted records to another system. The Export Token 601
is similar to share tokens except that it only need half of the
key. Unlike the Share Token 501, which will encrypt the
recordSet key, the Export Token 601 is used in place of the
RecordSet key 207. During an export, the RecordKeyCipher
307 of each exporting record will be rekeyed with the Export
Token 601.

FIG. 66 illustrates a Data Decryption Flow Using Export
Token Diagram 610. Unlike the Share Token 501 which will
decrypt the RecordSet key 207, the Export Token 601 is used
in place of the RecordSet key 207. During an export, the
RecordKeyCipher 307 of each exporting record will be
rekeyed with the Export Token 601.

FIG. 7 illustrates a Login Flow Diagram 700. The Entity
must authenticate with the system to gain access and func-
tionalities. In operation 701, the entity logs in via a user-
interface to the system. The login user-interface can be in the
form of Web user-interface or a program that issues a login
sequence to the system. The authentication process gener-
ally requires a username and user-defined key 105 to be
passed in. In operation 702, the system checks if the entity
has permission to access the system, and whether the user-
defined key 105 is valid. If the entity does not have a
permission or has invalid credentials, an error message is
returned in operation 704. If the authentication is successful,
an access token is returned to the entity. An Access token is
the authorization token that allows the entity to make calls
to methods of the invention.

FIG. 8 illustrates a Saving New Record Flow Diagram
800. In operation 801, the entity submits a new data record
to the system. The system determines if the record set exists
in the data store in operation 802. If the record set is not
found, a new RecordSet 201 is created and the RecordSet
key 207 is generated. If the record set is found, the Record-
SetKeyCipher 206 is decrypted by the Entity key 104 to
obtain the RecordSet key 207. The New Record 301 is
created and the Record key 308 is generated. The Data 304
is encrypted using the Record key 308 and the Record key
308 is encrypted using the RecordSet key 207. The New
Record 301 is stored to the data store in operation 803.
Furthermore, a response is send back to the entity in
operation 804.

FIG. 9 illustrates a Reading Record Flow Diagram 900. In
operation 901, the entity submits a request to view the
contents of the record set. The system determines if the
record set exists in the data store in operation 902. If the
record set is found, the system validates access of the Entity
against the record set Trusted Entity list 202. If the access is
valid, the system retrieves records for the given record set
from the data store in operation 903. The records are

10

20

25

30

40

45

50

55

60

65

6

decrypted using the Data Decryption Flow Diagram 400 and
sent back to the entity in operation 904.

FIG. 10 illustrates a Reading Query Flow Diagram 1000.
In operation 1001, the entity submits a request to view the
contents of the record set with conditions. The extra condi-
tions are used to filter the record results for the selected
record set. The system determines if the record set exists in
the data store in operation 1002. If the record set is found,
the system validates access of the Entity against the record
set Trusted Entity list 202. If the access is valid, the system
retrieves the records for the given record set with the
conditions from the data store in operation 1003. The
records are decrypted using the Data Decryption Flow
Diagram 400 and decrypted records are sent back to the
entity.

FIG. 11 illustrates a Regrouping Flow Diagram 1100. In
operation 1101, entity submits a request for the selected
records to be regrouped to a different record set. The system
determines if the source record set exists in the data store in
operation 1102. The system checks if entity have access to
the source record set. The system retrieves selected records
from the source record set in operation 1103. The system
determines if the destination record set exists in the data
store in operation 1104. If the destination record set is found,
the system determines if the entity belongs in the record set
Trusted Entity list 202. If the destination record set is not
found, the system creates a new record set and the entity
name is added to the new record set Trusted Entity list 202.
For each of the selected records, the system encrypts the
Record key 308 with the destination RecordSet key 207 and
the Record MetaData section 303 is updated to the data store
in operation 1105. The system returns response back to the
entity in operation 1106.

FIG. 12a illustrates a Sharing Creation Flow Diagram
1200. There are 3 levels of sharing: Token-Sharing, Entity-
Sharing, and Entity-Assigning. In operation 1201, the entity
selects a record set to be shared, and sets the share duration
period. The Entity submits a request to the system to obtain
Share Token 501. The system determines if the selected
record set exists in the data store in operation 1202. If the
record set is found, the system validates access of the Entity
against the record set Trusted Entity list 202. The system
created the Share Token Record 511 into the data store in
operation 1203. The RecordSet key 207 is encrypted using
the Shared Token Secret 503 and stored as a RecordSetKey-
Cipher 516 of the Sharing Token Record 511. The system
also creates the Share Token 501 which is send back to the
entity in operation 1204. Upon receiving the token, the
entity sends the Share Token 501 to the target party.

FIG. 125 illustrates a Token-Sharing Flow Diagram 1210.
Token-Sharing (token type=TOKEN-ACCESS) allows
access to anybody with the token. The Target party does not
need to be a valid entity in the system. Token-sharing
provides view access to anybody who has the token. Token-
Sharing is a way to create public access to part of your data.
In operation 1211, the entity submits a request to access a
record set using the Share Token 501. Using the Token key
502, the system locates the token in the data store in
operation 1212. The system validates the Sharing Token
using the steps found in the Sharing Token Validation
Workflow Diagram 520. The system determines if the
RecordSet 201 exists in the data store in operation 1213. If
the RecordSet 201 is found, the RecordSet 201 is decrypted
using Token Secret 503. The system retrieves all Records
301 for the given RecordSet 201 in operation 1214. The
records are decrypted and returned to the entity in operation
1215.

US 9,436,849 B2

7

FIG. 12¢ illustrates an Entity-Sharing Flow Diagram
1220. Entity-Sharing (token type=ENTITY-ACCESS)
requires the entity to exist in the system. When the Target
Entity Id field is not empty, only the named entity can access
the share. Otherwise, any valid entities of the system could
access the share. In operation 1221, the entity submits a
request to access a record set using the Share Token 501.
Using the Token key 502, the system locates the token in the
data store in operation 1222. The system validates the
Sharing Token using the steps found in the Sharing Token
Validation Workflow Diagram 520. The system determines
if the entity is a valid entity in the system and if the entity
has access to the record set in operation 1223. The system
determines if the RecordSet 201 exists in the data store in
operation 1224. If the RecordSet 201 is found, the Record-
Set 201 is decrypted using Token Secret 503. The system
retrieves all Records 301 for the given RecordSet 201 in
operation 1225. The records are decrypted and returned to
entity in operation 1226.

FIG. 13 illustrates an Assignment Flow Diagram 1300.
The assignment of a record-set to another entity is done
through the share token type ENTITY-ASSIGN. The entity
that was assigned with the said token will have full access
of the record set which including but not limited to assign-
ment rights to the other entities and abilities to create shares.
TOKEN-ACCESS or ENTITY-ACCESS can be used
instead to restrict access to readonly. In operation 1301, the
entity submits a request to the system to claim the assign-
ment. The system validates the Sharing Token using the
steps found in the Sharing Token Validation Workflow
Diagram 520. The system retrieves the shared record set
from the data store in operation 1302. The system adds the
entity to the record set Trusted Entity list and updates the
data store in operation 1303. The system sends a response
back to entity in operation 1304.

FIG. 14 illustrates an Export Flow Diagram 1400. In
operation 1401, the entity selects a record set. Within the
selected record set, the entity selects records to be exported
and submits the request to the system. The system deter-
mines if the source record set exists in the data store in
operation 1402. If the source record set exists, the system
determines if the Entity exists in the the record set Trusted
Entity list 202. The RecordSet key 207 is obtained by
decrypting the RecordSetKeyCipher 206 with the Entity key
104. The system retrieves the selected records from the data
store in operation 1403. The Export token 601 is created by
the system. For each Record 301, the RecordKeyCipher 307
is decrypted by the RecordSet key 207 to obtain the Record
key 308 and the Record key 308 is encrypted by the Export
token 601. The records are written into a file by the system
and both the Export file and Export token 601 are sent to the
target entity.

FIG. 15 illustrates an Import Flow Diagram 1500. In
operation 1501, the entity uploads a file for import and
enters the Export token 601. The Entity either selects an
existing record set or creates a new record set to import data
into. In operation 1502, the system decrypts the file using the
Export token 601. The system determines if the target record
set exists in the data store. If the target record set exists and
entity is not in the target record set Trusted Entity list 202,
the system adds the entity information to the list. If the
record set does not exist, a new RecordSet 201 is created and
the Entity is added to the record set Trusted Entity list 202.
The Import Record Record key 308 is encrypted with the
target RecordSet key 207 and the Import Records 301 are
written to the data store. The system returns a response to the
entity in operation 1503.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 16 illustrates an Overall System Architecture Dia-
gram 1600, representing one preferred embodiments. The
client section 1601 can be in the form of a web app, custom
native app, or browser running on a computing device,
including desktops, laptops, mobile devices, cellular phones,
tablet computer systems or other devices with like capabil-
ity. Data is sent and received to and from the client to the
application server section 1602. The Application Server
section 1602 handles requests coming in from the clients.
Optionally, the software package is referring to a server
application(s) in which data is being protected using the
method of this invention. The software framework is refer-
ring to programming languages, compilers, code libraries,
and tools sets; that are used to implement the method of this
invention. The system may contains several modules such
as: Access Control module, RecordSet Sharing module, and
Key Wrap module. The Database Server section 1603 is
accessible by the Application Server section 1602. Various
data related to this invention is stored in a data store in this
Database Server section 1603.

Record Key 308 may not be publicly shared. As such,
vulnerabilities of any sharing acts alone would not compro-
mise access to Record Key 308. At renewal of some Record-
Set Key 207, there would be no need to renew associated
Record Keys 308. There would also be no need to generate
new Record Keys 308, and no need to encrypt again Record
Data 302. The is a potential gain in performance and
efficiency as a result. However, using new Record Keys 308
while replacing a RecordSet Key 207 may be useful in some
alternative use cases.

RecordSet 201 and Shared Tokens 511 may be associated
with Access. When access is revoked, RecordSet Keys 207
may be renewed, yet no need to renew Record Keys 207.
Expiration by date and time is a preferred embodiment,
while alternative embodiments may also be implemented
using a shared token 511, or RecordSet 201, or Trusted
Entity List 202. In some alternative embodiments, renewal
of Record Keys 308 and Record Data 304 may also be
advantageous.

In the preferred embodiment, JSON is thought to be the
choice of data representation, and thus is used for illustration
purpose in many of the diagrams wherever applicable.

FIG. 1 is a structural view of sale data single cipher vs
composite cipher structure 2100. This diagram 2100 illus-
trates the difference between the JSON Encryption using
method of encrypting sale data as a single cipher 2110, and
the method of encrypting individual values to result in a
composite cipher structure 2120.

Method 2110 illustrates the flow of turning JSON data
into a single cipher. JSON data enters the system in step
2111, which is then encrypted using an encryption method in
step 2112. The result of the encryption is a long string as
seen in step 2114, resulting in a single cipher.

Method 2120 illustrates the flow of turning JSON data
into a composite cipher structure. JSON data enters the
system in step 2121, which is then encrypted using an
encryption method in step 2122, resulting in the same JSON
structure wherein all contained values are encrypted as
ciphers. The result found in step 2124 is still a JSON data
where the original name-value pair structure is preserved.

The encryption method used can be any modern methods
capable of carrying out cryptology. SHA 256 and AES are
among the many alternatives contemplated.

FIG. 2 is a conceptual view of a digital merchandise 2370
when used with Key Wrap data sharing technology 2200.
The Encrypted JSON Record 2221 serves as a basic con-

US 9,436,849 B2

9

tainer that is divided into two sections: JSON Data Core
2224 and JSON Meta Data 2223.

The JSON Data Core 2224 section contains the encrypted
JSON Sale Data 2204. A Record key 2209 is a randomly
generated key that was generated at encryption time. Each
Encrypted JSON Record 2221 is associated to a unique
Record key 2209. The Record key 2209 should stay with the
Encrypted JSON Record 2221 for the lifetime of the
Encrypted JSON Record 2221. The Record key 2209 is used
to encrypt and decrypt the JSON Sale Data 2204. The
Record key 2209 is encrypted and stored in the Record Meta
Data 2223 section as the RecordKeyCipher attribute 2205.

The Encrypted JSON Meta Data 2223 section contains
elements that provide information about the encryption of
the data such as RecordKeyCipher 2205, Algorithm 2206,
and idFields 2207. In some embodiments, the Record Meta
Data 2223 may contain an array of one or more of these
attributes.

The RecordKeyCipher 2205 element contains the
encrypted Record key 2209. The Access key 2208 encrypts
the Record key 2209. The Access key 2208 is a randomly
generated key string. The purpose of the Access key 2208 is
to provides users with access to the JSON Sale Data 2224.
Only users with the Access key 2208 would be able to
decrypt the Record key 2209 and ultimately using the
Record key 2209 to decrypt JSON Data Core 2224 to obtain
the Sale Data 2204. An important advantage of using Access
key 2208 during sharing and data transfer is that the
encrypted JSON Data Core 2224 does not need to be
decrypted, and the Record key 2209 does not need to be
shared. In some embodiments, the Access key 2208 may be
used to encrypt group of Record keys 2209 hence giving
users access to a subset of records.

The Algorithm 2206 attribute identifies the crypto algo-
rithm used to encrypt the data as well as the Record key
2209. This helps to ensure obtaining the original sale data by
using the same consistent algorithm for decryption.

The idFields 2207 contains a list of id fields that will not
be encrypted by the encryption method. The ID field attri-
bute contains a list of attributes that represent the object’s
identities. These attributes will not be encrypted and will
remain in plain text. Many databases require ID fields in
order to store JSON objects. If the content in the ID fields
point to an embedded object, the entire object will not be
encrypted.

FIG. 3 is a structural view of a composite cipher structure
wherein values are individually encrypted 2300. It illustrates
both a pseudo schema definitions and an JSON example that
is the preferred embodiment. It also illustrates Meta Data
2323 and a Data Core 2324 in pseudo schema definitions,
and what they would look like in JSON. The corresponding
pseudo definitions are shown in 2370.

In the preferred embodiment, a composite cipher structure
is used to store individually encrypted values 2364. The
advantage of a composite cipher structure is the capability to
support discovery and analysis of the Sale Data 2364
without decrypting any of the values. Note that there is an
additional price element 2366 in this illustration. The price
element is an example of a core attribute 2373 that is stored
unencrypted in the Data Core 2324.

FIG. 3 also depicts how servicing attributes and product
attributes are stored in the Meta Data 2323. For illustration
purpose, FIG. 3 shows an expiration timestamp 2361, a
social network tags array 2362, and a seal hash value 2363,
which are among some of the possible attributes contem-
plated to be present in the preferred embodiment. It is
possible that the actual presence of the individual attributes

10

15

20

25

30

35

40

45

50

55

60

65

10

is optional depending on the actual usages. Additional
elements are possible and likely as well.

FIG. 4 is a structural view of a single cipher, the result of
encrypting sale data as a whole 2400. Similarly as in FIG. 3,
Meta Data 2423 and Data Core 2424 are also shown, as well
as the pseudo definitions of the corresponding sections 2473
and 2474. It should be noted that the Sale Data 2464 is
encrypted as a single cipher to store in the Data Core 2424,
in contrast to the composite cipher structure 2364 as shown
in FIG. 3 2300. While this does not allow discovery and
analysis of the Sale Data, this could be an alternative to the
composite cipher structure when concealment of the Sale
Data is desirable.

FIG. 5 is a structural view of digital merchandise when
used with Key Wrap sharing technology 2500. In the pre-
ferred embodiment, Key Wrap RecordKeyCipher 2205,
idField 2207, and algorithm 2206 can all be found in Meta
Data 2568. Note that even though only one set of Key Wrap
Key Info is shown in FIG. 5 2500, it is typically more
common to have multiple Key Info present at the same time
as shown in FIG. 2 2200.

FIG. 6 illustrates the Data Encryption Flow Diagram
2600. One or more JSON objects enter the system to be
encrypted in step 2601. Either, a new Access key 2208 is
generated or an existing Access key 2208 can be reused in
step 2602. For each of the JSON objects, a Record key 2209
is created in step 2603. The Record key 2209 is then used to
encrypt the JSON Sale Data 204 in step 604. The encrypted
JSON data is stored in the JSON Data Core section 2224.
The Record key 2209 is encrypted by the Access key 2208
in step 2605 which results into a RecordKeyCipher 2205.
The RecordKeyCipher 2205 is then stored in the Meta Data
section 2223 of the Encrypted JSON Record 2221.

FIG. 7 illustrates the Data Decryption Flow Diagram
2700. JSON Record 2221 enters the system in step 2701. For
each JSON Meta Data 2223, the system uses the Access key
2208 to decrypt the RecordKeyCipher 205 to obtain the
Record Key 2209 in step 2702. The system then uses the
Record Key 2209 to decrypt the JSON Data Core 2224 to
retrieve Sale Data 2204.

FIG. 8 illustrates the Data Transfer Flow Diagram 2800.
JSON record 2221 can be transferred from one system to
another without the need of decrypting and re-encrypting the
data. In step 2801, a JSON record 2221 is selected for
sharing. As part of the data transfer, either the Access key
2208 or a new generated Access key 2208, referring to in the
rest of the steps as Shared key, is also required. The JSON
record 2221 and the Shared key 2208 are sent to the Target
system in step 2802. Ideally the JSON record 2221 and the
Shared key 2208 should be sent separately to ensure data
integrity.

Upon receiving both the JSON record 2221 and the
Shared key 2208, the Target system generates a new target
Access key 2208 in step 2803. In step 2804, the Target
system decrypts the RecordKeyCipher 2205 using the
Shared key 2208 to obtain the Record key 2209. The Target
system then encrypts the Record key 2209 with the new
target Access key 2208. The Shared key 2208 can now be
discarded as it is no longer needed. The Target system stores
the Encrypted JSON objects into their data stores in step
2505. The Target system securely protects the new Access
key in step 2506.

FIG. 9 is a graphical representation of steps of tagging a
JSON embodiment according to an aspect of the invention
2900. For illustration purpose, a tag ‘employee’ is created
2902 and placed in an tags array 2903. Among the many
alternatives contemplated, social networking tags and feed-

US 9,436,849 B2

11

back are thought to be the most common product attributes.
For illustration purpose, there is one tags array for each
JSON, although it is likely to have one or more tags array in
alternative embodiments. A tag is a commonly used feature
in social networking, adding descriptions in the form of meta
data, so users may understand the content of the resource
without first needing to download the content.

FIG. 10 is a graphical representation of steps of sealing a
JSON embodiment according to an aspect of the invention
1000. A hash value is computed by taking as input the whole
JSON Data Core 3002, including both the Sale Data and
core attributes as one unit of integrity control. The result is
then added to Meta Data 3003 as a seal hash value 2363. The
hash value could be computed by using one of the many
modern cryptographic checksum methods. Among the alter-
natives contemplated, MD5 and SHA-1 are thought to be the
choices in the preferred embodiment. The seal hash value
2363 is one of the product attributes contemplated in the
preferred embodiment. One advantage of using product
attributes is to allow extensible markup of a data merchan-
dise 2374, wherein data core and attributes can become
recursively part of another data merchandise, resulting in
one or more layers of attributes. This ability to be recursively
extensible is inherent in text based data representations.

FIG. 11 is a graphical representation of steps of adding
warranty expiration in a JSON embodiment according to an
aspect of the invention 3100. An expiration timestamp is
generated 3102 in a format specific to the JSON embodi-
ment, and is then placed in the Meta Data 3103. Warranty
expiration is an example of a servicing attribute, and is
among many servicing attributes contemplated to present in
the preferred embodiment. Servicing attributes provides
custom support to multiple service providers, allowing attri-
butes and values that may be specific to each individual
service providers, trading transactions, or a combination of
both.

FIG. 12 is a context diagram of trading of text based data
representation among stakeholders and marketplace 3200.
This diagram illustrates the various roles identified in the
preferred embodiment, including data providers 3220, buy-
ers 3230, and service providers 3240, all of which are
connected to marketplace 3210 in an online network. A
digital merchandise may be listed for sale in one or more
marketplaces 3210, and also traded among the stakeholders
through the use of a marketplace’s online API 3211. An
online API (Application Programming Interface) is a set of
software protocols accessible to stakeholders over a com-
puter network, and it is through these protocols that trade
transactions are carried out. When data providers 3220 list
sale data on a marketplace 3221, the online API 3211
automatically convert such sale data into digital merchan-
dise representation 2370. Data providers can be allowed to
provide updates to sale data, whereas the online API will
typically apply these updates to the core attributes of sale
data.

On the other hand, the online API 3211 makes it possible
for buyers 3230 carry out various trade transactions, such as
browsing for sale data and their list prices 3231. When trade
transactions successfully complete, access keys are typically
provided through the online API 3211 to buyers, for the
delivery of purchased digital merchandise. Furthermore, the
online API provides support of transactions that may not be
directly related to transactions of trading of sale data.
Examples include support of social network tags or feedback
provided by potential buyers. The online API to the product
attributes of sale data typically applies such updates.

10

15

20

25

30

35

40

45

50

55

60

65

12

Service providers 3240 are authorized parties who have
administrative access to sale data, who can provide updates
to the servicing attributes of sale data 3241. One of the many
servicing attributes that have been contemplated is a war-
ranty expiration date, whose values can vary depending on
one or more factors, such as date of transaction, license
agreements, and so on.

In addition to data providers 3220, buyers 3230, and
service providers 3240, other roles have also been contem-
plated in alternative embodiments. It is thought that their use
of the marketplace is to be carried out through the same
online API identified in the preferred embodiment.

Data 304 can be changed efficiently. The same Record
Key 308 can be used to encrypt changed data, and Record
Data 304 can be replaced without changing any Record Key
308 or RecordSet Keys 207. FIG. 17 illustrates a Data
Update Diagram 1700. Operations 1701, 1702, 1703, and
1704 are the Data Decryption steps found in FIG. 4a
diagram. Data 304 is updated with the changes in operation
1705. Using the same Record Key 308, data 304 is encrypted
and updated to the data store in operation 1706.

Access Control module, RecordSet Sharing module, and
Key Wrap module can run all at the same location (see FIG.
16 diagram), separate locations, or a combination of both.
There may or may not be firewalls between each modules.
Data and keys may not be required to upload to a single
location in order to share. FIG. 18 illustrates an Alternative
System Architecture Diagram 1800. In some scenarios, there
may be a need for each module to be on different computing
environments.

PATENT CITATIONS

Cited Publi-
patent Filing cation
application Date Date Applicant Title
14/050,947 Oct. 10, Jul. 10, SafelyLocked, TECHNIQUES
2013 2014 LLC FOR SECURE
DATA
EXCHANGE

The invention claimed is:

1. A Trust-No-One system for sharing encrypted infor-
mation among users securely and yet efficiently, wherein
encryption keys are encrypted by using randomly generated
keys when in storage, and users are kept out of possession
of encryption keys in decrypted forms when in use, com-
prising:

a processor that generates a Record, a Recordset, and an
Entity, wherein the Entity is coupled with the Record
via the Recordset;

a first memory for storing an encrypted Entity Key in the
Entity, storing an encrypted Record Key in the Record,
and storing the RecordSet that couples the Entity and
the Record;

a second memory for executing decryption, wherein a
secret is used to decrypt the encrypted Entity Key, the
decrypted Entity Key is further used to decrypt the
encrypted RecordSet Key, the decrypted RecordSet
Key is further used to decrypt the encrypted Record
Key, and the decrypted Record Key is further used to
decrypt data encrypted in the Record; and

US 9,436,849 B2

13

a memory storing instructions configured to be executed
by the processor to implement an encrypted record and
encryption keys wrapping method, wherein the proces-
sor further

receives a request of access to the Record from the Entity,

determines a permission to access the Record based on
decrypting the Record Key associated with the Record
using the RecordSet Key and the Entity Key associated
with the Entity in the second memory, and

allowing the permission to access the data when the
decrypting of the Record Key is successful.

2. The system of claim 1, wherein the system further
comprises an access control method that enables sharing
access without a centralized key store, the method compris-
ing:

adding a token-type in each of said tokens, wherein said
token-type is of type TOKEN-ACCESS, ENTITY-
ACCESS, or ENTITY-ASSIGN;

sharing tokens among user entities and user group enti-
ties, and by adding each of said user entities and user
group entities to said Trusted Entity List;

locating said Trusted Entity Lists by means of entity keys
stored in each of said tokens; and

decrypting said entity keys by means of said secrets in
each of said tokens.

3. The system of claim 1, wherein the system further
comprises a rekey method to update said recordset key
without decryption of said records.

4. The system of claim 1, wherein the system further
comprises a regrouping method to share said record to
additional recordsets without decryption of said records.

5. The system of claim 1, wherein the system further
comprises a secure and efficient record export method, the
method comprises:

adding said token’s secret to said Trusted Entity List in
place of said entity key; and

10

15

20

25

30

35

14

decrypt said recordset cipher by means of said token’s

secret to retrieve said recordset key.

6. The system of claim 1, wherein the system further
comprises a Entity Key distribution method for creating a
token by encryption of said Entity Key and said Record Key;
and protecting said token with a user defined secret.

7. The system of claim 1, wherein the system further
comprises an encryption keys creation method, the method
comprises:

creating said record key with the use of a bitstream;

creating said recordset key with the use of a bitstream;

creating said Entity Key with the use of a bitstream; and
creating said Cipher with the use of both Entity Key and
RecordSet Key.

8. The system of claim 1, wherein the system further
comprises a decryption method, the method comprises:

obtaining an encrypted record;

obtaining an RecordSet Key associated with said

encrypted record;

obtaining a RecordKey Cipher associated with said

encrypted record;

decrypting said RecordKey Cipher with said RecordSet

key to obtain a Record Key; and

decrypting said encrypted record with said Record Key to

obtain a Record.

9. The method of claim 8, wherein the method further
comprises a Record modification method, the method com-
prises:

obtaining a modified Record;

encrypting said modified Record with said Record Key to

obtain an replacement Record;

associating said replacement Record with said RecordKey

Cipher; and
associating said replacement Record with said RecordSet
Key.

